Lookup Tables

* Alookup table is an array that helps to find
data very quickly.

* The array stores references to data records
(or some values).

* A data record is identified by some key.

* The value of a key is directly translated into an
array index using a simple formula.

Lookup Tables (cont'd)

* Only one key can be mapped onto a particular
index (no collisions).

* The index that corresponds to a key must fall
into the valid range (from O to array.length-1).

* Access to data is “instantaneous” (O(1)).

Lookup Tables: Example 1

ZIp
codes

0

1

600
601
1004
1005
1006
1007
1008
1009
99950
99951
99998
99999

| <null> Corresponding
| <null> locales
| <null>

| Adjuntas, PR

| Amherst, MA

Barre, MA Some table entries

| <null> remain unused
Belchertown, MA

:Elanford, MA
Bondsville, MA

[Ketchikan, A
| <null>

M<null>

[<null>

Lookup Tables: Example 2

private static final int [] n_thPowerOf3 =
{1,3,9, 27, 81, 243, 729, 2187, 6561, 19683 };

/[precondition: 0 <=n <10
public int powOf3 (int n)
{

return n_thPowerOf3 [n |;

}

Lookup Tables: Example 3

Edit Palette

Sort order: IPaIette Order LI
AEEEEEEEEEEEEEEE oK
T —
EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE oo
EEEEEEEEEEEEEEEE
A —— 256 col qi
EEEEEEEEEEEEEEEN o CQOmLﬁe n
EESEENSEEREEEREE 2 partioutar image
EEEEEEEEEEEEEEEE each of the palette
EEEEEEEEE :
EEEEEEEEE entries
=IIDIIIII corresponds to a

triplet of RGB

Palette index: 0 Color: R:3, G:3,B:3 Val u eS

Applications of Lookup Tables

* Data retrieval

* Data compression and encryption
* Tabulating functions

* Color mapping

Hash Tables

* A hash table is similar to a lookup table.

* The value of a key is translated into an array
index using a hash function.

* The index computed for a key must fall into
the valid range.

* The hash function can map different keys onto
the same array index — this situation is called
a collision.

Hash Tables (cont'd)

* The hash function should map the keys onto
the array indices randomly and uniformly.

* A well-designed hash table and hash function
minimize the number of collisions.

* There are two common techniques for
resolving collisions: chaining and probing.

Each element in the array

Chal n | ng is itself a collection, called
a bucket (a list or a BST),
which is searched for the

Hash desired key
Function
"Peach" —_— 126 ey
Danger 4
Keep Out
L
122 123 124

"Peach"

Buckets

10

] If the place where we want to store
P ro b| n g the key is occupied by a different key,
we store the former in another
location in the same array, computed
using a certain probing formula

Hash
Function
"Pea Ch " g 1 2 6
Danger | ——"
KeepOut) "
.. The probing function
Peach? / recalculates the
A — © Index
o Y o SN
125 126 127 128 129 130
g | Apple |Banana| Lemon |Orange| |Peach |P1§
Nope... Nope... Yes!

11

java.util. HashSet<E> and
java.util.HashMap<K,V> Classes

These classes implement the Set<E>
and Map<K,V> interfaces, respectively,
using hash tables (with chaining).

This implementation may be more
efficient than TreeSet and TreeMap.

12

hashCode Examples

* For String:

hashCode = s,-31"" +5, 31" + .. . +5
= (where s, is Unicode for the i-th character in the

string)
* For Person:

public int hashCode ()

{
return getFirstName().hashCode() +

getLastName().hashCode();

13

Consistency

HashSet / HashMap first use hashCode,
then equals.

TreeSet / TreeMap use only compareTo (or a
comparator)

For consistent performance, these methods
should agree with each other:

X.equals (y) & x.compareTo (y) ==
x.equals (y) = x.hashCode() == y.hashCode()

14

