
2

Lookup Tables
• A lookup table is an array that helps to find

data very quickly.
• The array stores references to data records

(or some values).
• A data record is identified by some key.
• The value of a key is directly translated into an

array index using a simple formula.

3

Lookup Tables (cont’d)
• Only one key can be mapped onto a particular

index (no collisions).
• The index that corresponds to a key must fall

into the valid range (from 0 to array.length-1).
• Access to data is “instantaneous” (O(1)).

4

Lookup Tables: Example 1

 0 <null>
 1 <null>
 ...
 600 <null>
 601 Adjuntas, PR
 ...
 1004 Amherst, MA
 1005 Barre, MA
 1006 <null>
 1007 Belchertown, MA
 1008 Blanford, MA
 1009 Bondsville, MA
 ...
99950 Ketchikan, AK
99951 <null>
...
99998 <null>
99999 <null>

Zip
codes

Corresponding
locales

Some table entries
remain unused

5

Lookup Tables: Example 2

 private static final int [] n_thPowerOf3 =
 { 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683 };
 ...

 // precondition: 0 <= n < 10
 public int powOf3 (int n)
 {
 return n_thPowerOf3 [n];
 }

6

Lookup Tables: Example 3

256 colors used in
a particular image;
each of the palette
entries
corresponds to a
triplet of RGB
values

7

Applications of Lookup Tables
• Data retrieval
• Data compression and encryption
• Tabulating functions
• Color mapping

8

Hash Tables
• A hash table is similar to a lookup table.
• The value of a key is translated into an array

index using a hash function.

• The index computed for a key must fall into
the valid range.

• The hash function can map different keys onto
the same array index — this situation is called
a collision.

9

Hash Tables (cont’d)
• The hash function should map the keys onto

the array indices randomly and uniformly.
• A well-designed hash table and hash function

minimize the number of collisions.
• There are two common techniques for

resolving collisions: chaining and probing.

10

Chaining

"Peach"

Hash
Function

Danger
Keep Out

126 "Peach"

122 123 124 125 126 127

!

Buckets

Each element in the array
is itself a collection, called
a bucket (a list or a BST),
which is searched for the
desired key

11

126 "Peach"

Peach?

Apple Banana Lemon Orange Peach Pl

Nope... Nope... Yes!

125 126 127 128 129 130

Hash
Function

Danger
Keep Out

Probing

The probing function
recalculates the
index

If the place where we want to store
the key is occupied by a different key,
we store the former in another
location in the same array, computed
using a certain probing formula

12

java.util.HashSet<E> and
java.util.HashMap<K,V> Classes

• These classes implement the Set<E>
and Map<K,V> interfaces, respectively,
using hash tables (with chaining).

• This implementation may be more
efficient than TreeSet and TreeMap.

13

hashCode Examples
• For String:

➢ (where si is Unicode for the i-th character in the
string)

• For Person:

1 2
0 1 131 31n n

nhashCode s s s− −
−= ⋅ + ⋅ + +…

public int hashCode ()
 {
 return getFirstName().hashCode() +
 getLastName().hashCode();
}

14

Consistency
• HashSet / HashMap first use hashCode,

then equals.
• TreeSet / TreeMap use only compareTo (or a

comparator)
• For consistent performance, these methods

should agree with each other:
➢ x.equals (y) ⇔ x.compareTo (y) == 0
➢ x.equals (y) ⇒ x.hashCode() == y.hashCode()

