Lookup Tables

* Alookup table is an array that helps to find
data very quickly.

* The array stores references to data records
(or some values).

* A data record is identified by some key.

* The value of a key is directly translated into an
array index using a simple formula.




Lookup Tables (cont'd)

* Only one key can be mapped onto a particular
index (no collisions).

* The index that corresponds to a key must fall
into the valid range (from O to array.length-1).

* Access to data is “instantaneous” (O(1)).



Lookup Tables: Example 1
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Lookup Tables: Example 2

private static final int [ ] n_thPowerOf3 =
{1,3,9, 27, 81, 243, 729, 2187, 6561, 19683 };

/[ precondition: 0 <=n <10
public int powOf3 (int n)
{

return n_thPowerOf3 [ n |;

}




Lookup Tables: Example 3
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Applications of Lookup Tables

* Data retrieval

* Data compression and encryption
* Tabulating functions

* Color mapping




Hash Tables

* A hash table is similar to a lookup table.

* The value of a key is translated into an array
index using a hash function.

* The index computed for a key must fall into
the valid range.

* The hash function can map different keys onto
the same array index — this situation is called
a collision.




Hash Tables (cont'd)

* The hash function should map the keys onto
the array indices randomly and uniformly.

* A well-designed hash table and hash function
minimize the number of collisions.

* There are two common techniques for
resolving collisions: chaining and probing.




Each element in the array
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] If the place where we want to store
P ro b| n g the key is occupied by a different key,
we store the former in another
location in the same array, computed
using a certain probing formula
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java.util. HashSet<E> and
java.util.HashMap<K,V> Classes

These classes implement the Set<E>
and Map<K,V> interfaces, respectively,
using hash tables (with chaining).

This implementation may be more
efficient than TreeSet and TreeMap.
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hashCode Examples

* For String:

hashCode = s,-31"" +5, 31" + .. . +5
= (where s, is Unicode for the i-th character in the

string)
* For Person:

public int hashCode ()

{
return getFirstName( ).hashCode( ) +

getLastName( ).hashCode( );
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Consistency

HashSet / HashMap first use hashCode,
then equals.

TreeSet / TreeMap use only compareTo (or a
comparator)

For consistent performance, these methods
should agree with each other:

X.equals (y) & x.compareTo (y) ==
x.equals (y) = x.hashCode( ) == y.hashCode( )
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